General Analysis of Anti-Deuteron Dark Matter Search

Yanou Cui

Harvard University

with John Mason and Lisa Randall (To appear soon)

Outline

- **Introduction**
- 2 Anti-D Cosmic Ray Flux
- Experimental Reach for Various Final States
- General Bounds/Features of DM Related to its Detections
- $ar{D}$ Detection Prospect for Specific Models
- Conclusions

Search Paths for Dark Matter

Existence of DM ✓ – Macroscopic effects: galaxy rotation curve, gravitational lensing...

What is DM? Microscopic feature?—Little is known... Familiar search Paths:

- Direct Detection: DM scatters off target nucleus, better control/estimation of background (CDMS, XENON...)

 But rate may be highly suppressed: current bound SI elastic $\sigma_{\chi p} \lesssim 10^{-7} \mathrm{pb}$ for $10-100 \mathrm{GeV}$ DM, could get more stringent in coming years (XENON100/1T, Super-CDMS)
- Indirect Detection: Cosmic Ray SM particles produced from DM annihilation, s-wave annihilation
 (σ_{ann}ν)_{thermal} = 1pb√ (Ω_{DM})
 But most IdDt channels (e⁺, γ, p̄): large astrophysical bkg, uncertainties, hard to 'confirm' as DM origin (e.g.controversies after PAMELA, FERMI excess)

Low Background Channel for IdDt?⇒Low energy D! (Bottino, Donato, Fornengo and Salati, 1998)

- Conventional DM: color multiplicity→significant BR(ann) to hadrons ('Conservative' about PAMELA excess).
 Advantages compared with p̄:
- Higher threshold energy for secondary astrophysical production: (pH), (pH_e) collision, $E_{th}(\bar{p}) = 7m_p$, $E_{th}(\bar{D}) = 17m_p$, suppression from cosmic ray p number distribution $N_p \sim E_p^{-2.7}$. $K_{\bar{D}} \sim 2 \text{GeV}$
- Suppressed tertiary production of low E D̄: 'slow-down' during inelastic scattering off galactic nucleus: p̄√,
 Not for D̄! 'Fragility': E_{binding}(D̄) = 2.2MeV⇒ Breaking apart instead of losing energy

High sensitivity experiments coming soon!
-AMS-02 (2010), GAPS (LDB2011, ULDB2014, SAT)

Our Goal

Most existing anti-D related DM study: signal for particular DM models, e.g. SUSY $\tilde{\chi}_0$ (Donato, Fornengo, Salati, 1999; Baer and Profumo 2005, etc.)

Our goal: Take a broader view— +general analysis for general DM candidates

- Anti-D flux from various SM final states, mass reach at AMS-02, GAPS
- Generic scalar, fermion, vector DM models: correlation between thermal relic density, DiDt and IdDt, operator analysis

Injection Spectrum

- \bar{D} injection spectrum: m_{DM} , final states composition ($\bar{t}t$, $\bar{b}b$, h^0h^0 , gg, W^+W^-)

 -hadronization simulated by PYTHIA6.4
- Formation of \bar{D} from $\bar{p} \bar{n}$ (coalescence model): in \bar{n} rest frame, $K_{\bar{p}} < B$, or $|\vec{k}_{\bar{n}} \vec{k}_{\bar{p}}| < (2m_pB)^{\frac{1}{2}} \sim p_0 \sim 70 \text{ MeV} \Rightarrow \bar{D}!$ more accurately, p_0 by fitting ALEPH Z decay data: $p_0 = 160 \text{MeV}$
- Different Spectral features for different final states—colored $(\bar{b}b, \bar{t}t)$: hadronize in rest frame, peak at low K even at large m_{DM} —favored by \bar{D} search; color-neutral (h^0h^0, W^+W^-) : hadronize in boosted frame, peak at higher K esp. at high m_{DM}

Figure: The anti-D injection spectrum as a function of Kinetic Energy, T, for W^+W^- , $hh(115~{\rm GeV})$, $\bar{t}t$, $b\bar{b}$ final states. $m_{DM}=100~{\rm GeV(blue/solid)}$, $200~{\rm GeV(green/dashed)}$, $300~{\rm GeV(red/dottd)}$, $400~{\rm GeV(blue/solid)}$, $600~{\rm GeV(blue/solid)}$, $700~{\rm GeV(green/dashed)}$, $800~{\rm GeV(blue/solid)}$

Anti-D Flux: Propagation from galactic halo to us

• 2D diffusion model. The diffusion equation for charged cosmic rays (Uncertainty in model parameters: MIN, MED, MAX):

$$\frac{d}{dt}\psi(r,z,E) = Q(r,z,E) - 2h\delta(z)\Gamma_{ann}(E)(n_H + 4^{\frac{2}{3}}n_{He})\psi(r,z,E)
+ K(E)\left(\frac{\partial^2}{\partial z^2} + \frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial}{\partial r}\right)\psi(r,z,E) - V_C\frac{\partial}{\partial z}\psi(r,z,E)$$

primary source Q obtained from DM \bar{D} injection spectrum $(\frac{dN}{dT})$

$$Q(r, z, T) = \frac{1}{2} \langle \sigma v \rangle \left(\frac{\rho(r, z)}{m_{DM}} \right)^{2} \frac{dN}{dT}.$$

$$\rho_{Ein}(r) = \rho_{\odot} \exp \left[-2 \left[\left(\frac{r}{r_{c}} \right)^{\alpha} - \left(\frac{r_{\odot}}{r_{c}} \right)^{\alpha} \right] / \alpha \right]$$

Solar Modulation:

$$\Phi_{\bigoplus}(T_{\bigoplus}) = \frac{2mT_{\bigoplus} + T_{\bigoplus}^2}{2mT_{\bot} + T_{\bigoplus}^2} \Phi(T), \quad T = T_{\bigoplus} + e\phi_F.$$

Experimental Reach for Certain Final States ($BR = 1, \langle \sigma v \rangle = 1 \text{pb}$)

Mass reach: the largest DM mass (GeV) for which the anti-D flux yields N_{crit} -number for 2σ or 5σ signal at certain experiment.

Experiment	σ̄q	tt	$h^0 h^0$	W ⁺ W ⁻	N _{crit}
AMS-02 high (2σ)	110	< <i>m</i> _t	< <i>m</i> _h	$< m_W$	1
AMS-02 low (2σ)	150	220	150	140	1
GAPS (LDB) (2σ)	150	220	150	120	1
GAPS (ULDB) (2σ)	360	560	300	200	1
GAPS (SAT) (2σ)	700	1000	550	270	4
AMS-02 high (5σ)	50	< <i>m</i> _t	< <i>m</i> _h	$< m_W$	6
AMS-02 low (5σ)	70	$< m_t$	$< m_h$	$< m_W$	4
GAPS (LDB) (5σ)	75	$< m_t$	$< m_h$	$< m_W$	3
GAPS (ULDB) (5σ)	150	220	150	120	5
GAPS (SAT) (5 σ)	360	550	300	200	14

General Bounds/Features of DM related to its detections

• Features of general DM: spin (0, 1/2, 1), interaction with SM (operator), mass \Rightarrow

$$\begin{array}{l} \Omega_{DM} \rightarrow \langle \sigma | v | \rangle_{therm} = 1 \mathrm{pb}, \, \langle \sigma | v | \rangle_{ann} \, (IdDt), \\ \sigma_{SI} \lesssim 10^{-7} \mathrm{pb} \, (XENON, \, CDMS \, bound), \, \, \sigma_{SD} \, (DiDt) \\ \Rightarrow \frac{\langle \sigma | v | \rangle_{therm}}{\sigma_{SI}} \geq 10^{7} \end{array}$$

Correlation between ⟨σ|v|⟩_{therm} and σ_{SI} via crossing symmetry of Feynman diagram⇒Tension
 E.g. DM χ interacts with quarks, leptons, W/Z with 'unbiased' universal couplings, mediator couplings to DM and SM state g₁, g₂. To relate to both ⟨σ|v|⟩_{therm} and DiDt, focus on e.g. u quark. Effective Fermi coupling for the related operator χ[†]χq̄q

$$G = \frac{g_1 g_2}{[(4m_Y^2 - M^2)^2 + \Gamma_M^2 M^2]^{1/2}}$$

BR(u) for annihilation $\sim 10\% \Rightarrow$

$$\langle \sigma | v | \rangle_{therm}^{u} = \frac{3(g_1 g_2)^2}{4\pi [(4m_{\chi}^2 - M^2)^2 + \Gamma_M^2 M^2]} = 10^{-37} \text{cm}^2.$$

Crossing the Feynman diagram \Rightarrow associated process/rate for DiDt(SI)

$$\sigma_{\chi p} = \frac{1}{4\pi} \frac{m_p^2}{(m_\chi + m_p)^2} \frac{(g_1 g_2)^2}{M^4} \left(\sum_{q=u,d,s} \frac{m_p}{m_q} f_{Tq}^p + \sum_{q=c,b,t} \frac{m_p}{m_q} \frac{2}{27} f_{TG}^p \right)^2$$

$$\approx \frac{1}{\pi} \frac{m_p^2}{m_\chi^2} \frac{(g_1 g_2)^2}{M^4} \sim 10^{-41} \text{cm}^2$$

 $f_{TG}^{p}, f_{Tq}^{p} \propto$ gluon and quark matrix element in the nucleon However, current DiDt bound $\Rightarrow \sigma_{\chi p} \lesssim 10^{-43} \mathrm{cm}^{2}$ for EW mass DM \Rightarrow naive estimation $\sim O(100)$ real $\frac{\langle \sigma | v | \rangle_{therm}}{\sigma_{Sl}}$ (more severe if null result in near future XENON100/1T...)

Realistic Models: Mechanisms Affecting $\frac{\langle \sigma|v| \rangle_{therm}}{\sigma_{Sl}}$ -1

- Enhance $\langle \sigma | v | \rangle_{therm}$:
 - S-Channel Resonance
 - Coannihilation with mass degenerate partner, particularly useful when self-annihilation p-wave suppressed
- Suppress SI coupling
 - Suppression from Flavor Dependent Couplings: Suppressed coupling to light quark, while other efficient channels (t, lepton, W/Z) maintains $\langle \sigma | v | \rangle_{therm}$. 'Classic' example--Yukawa coupling via h-like mediator: Go back to SI σ_{yp} , replace the universal g_2 by y_a :

$$\sigma_{\chi\rho} = \frac{1}{4\pi} \frac{m_{\rho}^2}{(m_{\chi} + m_{\rho})^2} \frac{(g_1)^2}{M^4} \left(\sum_{q=u,d,s} \frac{m_{\rho}}{m_q} y_q f_{Tq}^{\rho} + \sum_{q=c,b,t} \frac{m_{\rho}}{m_q} y_q \frac{2}{27} f_{TG}^{\rho} \right)^2$$

$$\approx \frac{1}{\pi} \frac{m_{\rho}^2}{m_{\phi}^2} \frac{(g_1)^2}{M^4} (\frac{m_{\rho}}{v})^2 \cdot 0.2 \approx 10^{-45} \text{cm}^2$$

around the reach of XENON100/XENON1T, Super-CDMS!

Realistic Models: Mechanisms Affecting

$$\frac{\langle \sigma | v | \rangle_{therm}}{\sigma_{SI}}$$
-2

Operator dependent kinematic suppression:

small transferred
$$p \sim \text{keV} \Rightarrow \epsilon_{\text{v}} = \left(\frac{\text{v}_{DM}}{c}\right)^2 \sim 10^{-6}$$
; low p_q in nucleon: $\epsilon_{QCD} = \left(\frac{\Lambda_{QCD}}{m_{DM}}\right)^2 \sim 10^{-6}$

- Inelastic splitting: DM has heavier 'excited' partner, inelastic scattering dominant; $\Delta m \Rightarrow$ kinematic barrier, suppressed by n_{DM} at high v. In general $\Delta m \gtrsim 1 \text{MeV}$ evade all DiDt bounds. Recently well known for explaining DAMA with $\Delta m \sim 100 \text{keV}$.
- Annihilation to Dark Sector States: DM dominantly couples to dark sector, only via small mixing to SM.
 GeV-dark sector recently well explored in light of PAMELA, FERMI anomaly.
- Non-Thermal DM: axions, gravitino LSP. Mostly 'super-weakly' interacting at both DiDt and IdDt

Operator Properties Relevant for Dark Matter Detection

- Motivation: operator dependence of ϵ_V , ϵ_{QCD} , ϵ_Y for DiDt and p-wave/helicity suppression for IdDt
- Study general scalar, fermion (Majorana, Dirac), vector DM. All 4-point SM-DM interaction operator can be written in form of ODMOSM, where O is bilinear operator
- All interesting information (potential suppressions) easily extracted from bilinear properties and CP, J conservation. (Tables listed next page)
- Useful tool for model building, as well as systematic understanding of existing models (later...)

Fermion:

	i citiloti.									
ſ		ΨΨ	$\bar{\Psi}\gamma^5\Psi$	$\bar{\Psi}\gamma^{\mu}\Psi$	$\bar{\Psi}\gamma^{\mu}\gamma^{5}\Psi$	$\bar{\Psi}\sigma^{\mu\nu}\Psi$	$\bar{\Psi}\sigma^{\mu\nu}\gamma_5\Psi$	$(\bar{\Psi}\gamma^{\mu}\partial^{\nu}\Psi)_{\pm}$	$(\bar{\Psi}\gamma^{\mu}\gamma^{5}\partial^{\nu}\Psi)_{\pm}$	
ſ	SI	$\epsilon \gamma$	0	√	$\epsilon_{ m v}$	$\epsilon_{ m v}$	$\epsilon_{ m v}$	€QCD	$\epsilon_{ m v}$	
	SD	0	$\epsilon_{\rm v}\epsilon_{\rm Y}$	$\epsilon_{ m v}$	✓	✓	✓	$\epsilon_{ m v}$	ϵ_{QCD}	
ſ	С	+	+	_	+	_	_	Ŧ	±	
Π	Р	+	_	$(-)^{\mu}$	$-(-)^{\mu}$	$(-)^{\mu,\nu}$	$-(-)^{\mu,\nu}$	$(-)^{\mu,\nu}$	$-(-)^{\mu, u}$	
	s-wave	0	✓	√	✓	✓	✓	+:√,-:0	+:0, -: ✓	

Scalar:

		$\phi^{\dagger}\phi$	$(\phi^{\dagger}\partial_{\mu}\phi)_{\pm}$	$(\phi^{\dagger} \partial_{\mu} \partial_{\nu} \phi)_{\pm}$
٠ ا	С	+	±	±
	Р	+	$(-)^{\mu}$	$(-)^{\mu,\nu}$
	s-wave	√	+: ✓, −: 0	$+: \checkmark, -: 0$

Vector boson:

ſ		VV	$(VV)^{\mu\nu}_{\pm}$	$(\epsilon VV)^{\mu\nu}_{\pm}$	$(V\partial V)^{\mu}_{\pm}$	$(\epsilon V \partial V)^{\mu}_{\pm}$	$(V\partial\partial V)^{\mu\nu}_{\pm}$	$(\epsilon V \partial \partial V)^{\mu\nu}_{\pm}$	$(V\partial^2 V)_{\pm}$	
ſ	С	+	±	±	±	±	±	±	±	
ſ	Р	+	$(-)^{\mu,\nu}$	$-(-)^{\mu,\nu}$	$(-)^{\mu}$	$-(-)^{\mu}$	$(-)^{\mu,\nu}$	$-(-)^{\mu,\nu}$	+	
Π	s-wave	√	√	√	$+: \checkmark, -: 0$					

Anti-D detection prospect for specific models

Predicted number of anti-deuterons detected in various experiments for a set of dark matter models. Promising at GAPS -ULDB, SAT

Model	m _{DM} (GeV)	σ v	ξw	ξq	ξ _t	ξh	$N_{2\sigma} = 1$ $N_{5\sigma} = 4$ (ULDB)	$N_{2\sigma} = 5$ $N_{5\sigma} = 14$ (SAT)	σ _{SI}	σ_{SD}
SUSY F.P (1)	190	0.67	0.2	0.02	0.73	0	4	47	10-8	10-4
SUSY F.P (2)	772	0.33	0.55	0	0.38	0	0	1	10 ⁻⁸	10 ⁻⁵
SUSY coann	148	0.17	0	1	0	0	1	11	10 ⁻⁸	10 ⁻⁶
SUSY A-funnel	163	0.6	0	0.92	0	0	2	30	10 ⁻⁸	10 ⁻⁶
UED <i>B</i> ⁽¹⁾	900	0.6	0	0.19	0.16	0.02	0	0	10 ⁻⁸	10-6
UED B ⁽¹⁾ coann.	600	0.6	0	0.19	0.16	0.02	0	1	10 ⁻⁸	10 ⁻⁶
LHTP	200	0.8	1	0	0	0	0	9	10 ⁻¹²	10-10
LZP ν_R^0	300	1	0.06	0	0.94	0	3	38	10 ⁻⁹	10-7
Singlet (scalar)	200	1	0	0	0	1	2	33	10 ⁻⁸	0
Doublet/Sing	et 75	0.1	1	0	0	0	3	46	0	10^{-4}

Conclusions

- Anti-D is a unique low background ldDt channel for DM
- With current day $\langle \sigma | v | \rangle_{ann} = 1$ pb, near future experiments (AMS-02, 3-phase of GAPS) have good reach for various annihilation final states
- General tension between $\langle \sigma | v | \rangle_{therm}$ and bound on σ_{SI} is studied, basic mechanisms listed as solution. Operator analysis for various DM/interaction: for a variety of models significant \bar{D} signal even when DiDt rate highly suppressed
- Detection prospects for various well-motivated models is studied: promising at GAPS-ULDB, SAT